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Received 15 June 1996

Abstract. The phonon dispersion relations and the elastic constants are evaluated for Wigner
electron crystals near the critical coupling strength for melting in the fully quantal regime at zero
temperature. The structures considered are the body-centred and face-centred cubic lattices in
dimensionalityD = 3 and the triangular lattice inD = 2. The calculations are based on a density
functional approach requiring as input the linear density response function of the fluid phase at
freezing and the Debye–Waller factor of the crystal at melting. These are known from quantal
Monte Carlo simulations both forD = 3 and for D = 2. Comparison with earlier results
of harmonic calculations shows appreciable softening from anharmonicity, which is mainly
associated with the exchange and correlation contributions to the effective force constants of
the quantal crystal near melting. Mechanical stability of the body-centred cubic electron crystal
at melting is demonstrated through a self-consistent calculation of the lattice vibrations and the
mean square particle displacement entering the Debye–Waller factor, as well as by calculations
of the elastic constants using the methods of long waves and of homogeneous deformations.
Finally, a relationship is displayed between phonon dispersion curves in the triangular Wigner
crystal near melting and plasmon excitations in the two-dimensional electron fluid near freezing.

1. Introduction

It was predicted in early work by Wigner [1, 2] that the degenerate fluid of electrons
embedded in a uniform neutralizing background should crystallize at sufficiently low density
in a body-centred cubic (BCC) lattice, as an extreme consequence of correlations induced
in the electronic motions by their Coulomb repulsive interactions. Quantal Monte Carlo
(QMC) simulations by Ceperley and Alder [3] later established that, atrs ≈ 100, the
BCC electron crystal becomes energetically favoured relative to the spin-polarized fluid,
this fluid state being lower in energy with respect to the unpolarized fluid forrs > 75. As
usual,rs is a dimensionless length related to the electron densityn in dimensionalityD = 3
by rsa0 = (4πn/3)−1/3 with a0 the Bohr radius. QMC work has also established a similar
phase behaviour for a degenerate system of electrons inD = 2 with e2/r interactions,
crystallizing into a triangular lattice atrs ≈ 35 with rsa0 = (πn)−1/2 in this case [4, 5].

Early theoretical attempts to assess the density range of mechanical stability for ideal
Wigner crystals were based on self-consistent calculations of the effects of anharmonicity
on their vibrational properties, as presented for the BCC crystal by Kugler [6] and for
the triangular crystal by Platzman and Fukuyama [7]. Kugler evaluated first the vibrational
frequencies of the crystal in a renormalized harmonic approximation (RHA) neglecting inter-
site correlations. In the RHA the mean square displacement of a particle in its vibrational
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motion around its lattice site enters the dynamical matrix and is self-consistently determined
from the inverse first moment of the vibrational spectrum. Kugler found that a self-consistent
solution of the RHA could be obtained down tors = 21.9, at which an instability of the
BCC lattice arose, leading to a discontinuous vanishing of the crystalline order parameters
in a first-order transition to a fluid phase. The RHA calculations of Platzman and Fukuyama
for the triangular lattice similarly admit a self-consistent solution down tors = 4.5. Thus, in
both cases the predicted stability limit of the crystal safely lies at much higher density than
that for thermodynamic melting in the QMC work. However, for the BCC crystal Kugler
also tried to evaluate higher order anharmonic effects, including some account of inter-site
correlations. He found from these calculations that deviations from harmonicity could set
in at much larger values ofrs , leading to instability of the BCC lattice forrs < 700.

Recent developments in density functional theory (DFT) offer the possibility of
evaluating the anharmonic vibrational frequencies in the crystal near melting directly from
properties of the fluid phase near freezing, rather than from an interatomic potential energy
function treated by an anharmonic expansion (see Tosi and Tozzini [8] and references given
therein). This approach assumes that the bonding character is not changed across melting
and that the effective force constants in the crystal near melting are described by a Fourier-
transformable central field, with Fourier transformF(k) say. The simplest DFT calculation
of F(k) expresses it through the density reponse function of the fluid phase and the Debye–
Waller factor of the crystalline phase. For a quantal Wigner crystal [9] the structure of the
renormalized phonon dispersion curves is thus similar to that obtained in the self-consistent
phonon theories, with exchange and correlation being included through recourse to the
density response function of the fluid. Correlations are crucially important at largers , at
which they drive Wigner crystallization.

We present in this work DFT calculations of the renormalized phonon dispersion curves
and the elastic constants for the BCC and the face-centred cubic (FCC) Wigner crystals
in D = 3 and for the triangular Wigner lattice inD = 2. The essential input is taken
from QMC work on the density response function of the electron fluid inD = 2 [10] and
D = 3 [11] and on the mean square displacements in Wigner crystals [4, 12]. Exchange and
correlation enter the theory primarily through the so-called local field factorG(k) from the
dielectric screening theory of the electron gas [13]. Thus, the present work also tests and
refines our earlier results for the BCC crystal [9], for which QMC values ofG(k) were not
yet available so that only an estimate of this function could be constructed from its known
asymptotic behaviours.

The consequence of exchange and correlation is to induce an effective attraction
between the electrons and hence an anharmonic softening of the vibrational frequencies,
as already suggested by the aforementioned work of Kugler. We examine with particular
care below the question of the mechanical stability of Wigner crystals, in terms of two
main aspects: (i) consistency between the renormalized vibrational spectrum and the mean
square displacement and (ii) stability under elastic deformations. In the latter respect we
evaluate the elastic constants by two alternative methods, from the long-wavelength limit of
the vibrational dispersion curves (the method of long waves, or LW) and from a calculation
of the energy change accompanying static homogeneous deformations (the HD method).
Consistency between the results obtained by these two methods is a primary issue in the
microscopic theory of the elasticity of crystals [14].

The lay-out of the paper is briefly as follows. The theory behind the calculations of
vibrational frequencies and elastic constants of a quantal crystal near melting is presented in
section 2 and in two appendices. Sections 3 and 4 report our results for 3D and 2D Wigner
crystals, respectively. Section 5 offers a summary of our results and our main conclusions.
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2. The DFT approach to vibrational frequencies and elastic constants of quantal
crystals at melting

The Hohenberg–Kohn theorem for a many-body system at zero temperature in an external
potentialv(r) allows one to define uniquely a functionalE[n(r)] of the one-body density
n(r), which is minimized by the ground-state density and takes at that density the value of
the ground-state energy. We write

E[n(r)] = T0[n(r)] +
∫

drn(r)v(r) + Eex [n(r)] (1)

whereT0[n(r)] is the ideal-gas kinetic energy functional andEex [n(r)] is the excess (Hartree
plus exchange and correlation) energy functional. The equilibrium condition can be written
as

δT0[n(r)]

δn(r)
= µ − v(r) − δEex [n(r)]

δn(r)
(2)

≡ µ − vKS(r)

where µ is the chemical potential andvKS(r) is the Kohn–Sham effective one-body
potential.

In the present casev(r) is a potential which acts on a crystal to deform it by generating
a wave of lattice site displacements of arbitrarily small amplitude. This potential does not
need to be specified in evaluating the corresponding change1� in the grand thermodynamic
potential � = E − µN , to quadratic terms in the displacement amplitude [15]. From
equations (1) and (2) we can write

� = �0 + �ex (3)

where

�0 = T0[n(r)] −
∫

dr n(r)
δT0[n(r)]

δn(r)
(4)

�ex = Eex [n(r)] −
∫

dr n(r)
δEex [n(r)]

δn(r)
. (5)

The work associated with the deformation is then obtained as

1� = 1�0 + 1�ex (6)

the differences being taken between the deformed and undeformed crystal with equilibrium
density profilesnd(r) andn0(r), respectively.

In the case of a Wigner crystal the ideal term1�0 in equation (6) is estimated by two
alternative approximations in appendix 1 and shown to be essentially negligible in the present
context. On the other hand, we treat the excess energy functional by a quadratic functional
expansion both of the deformed and of the undeformed crystal around the homogeneous
fluid phase, with the result

1�ex = −1

2

∫ ∫
dr1 dr2

δ2Eex [n(r)]

δn(r1)δn(r2)

∣∣∣∣
n(r)=n

[nd(r1)nd(r2) − n0(r1)n0(r2)]. (7)

The functional derivative in equation (7) is taken on the homogeneous fluid phase near
crystallization. It is immediately related in Fourier transform to the static density response
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function χ(k) of the fluid phase and to the static Lindhard susceptibilityχ0(k), and hence
to the static local field factorG(k) for exchange and correlation:

FT

(
δ2Eex [n(r)]

δn(r1)δn(r2)

∣∣∣∣
n(r)=n

)
= n

(
1

χ0(k)
− 1

χ(k)

)
= φ(k)[1 − G(k)]. (8)

Here,φ(k) is the Fourier transform of the Coulomb potential, given byφ(k) = 4πne2/k2

in D = 3 and byφ(k) = 2πne2/k in D = 2.

2.1. Vibrational frequencies

The set of lattice site displacementsdR in the deformed crystal is taken as a static wave
corresponding to a phonon of wavevectorq and branch indexs, with eigenvector̂εqs and
eigenfrequencyωqs . The work associated with the deformation is1� = −mω2

qsα
2/4, where

m is the electron mass andα is the amplitude of the displacement wave. Comparing this
with the result in equations (6)–(8) and using a Gaussian approximation for the fluctuations
of the electron density around each lattice site, one obtains the dispersion relation [9]

ω2
qs = F(q)(q · ε̂qs)

2 +
∑
K 6=0

{F(|q + K|)[(q + K) · ε̂qs ]
2 − F(K)(K · ε̂qs)

2}. (9)

In equation (9)K denotes the reciprocal vectors of the lattice andF(k) is given by

F(k) = 1

m
φ(k)f 2(k)[1 − G(k)]. (10)

Heref (k) is the Debye–Waller factor of the crystal at melting, which is given by

f (k) = exp

(
− 1

2D
k2L2d2

)
(11)

in terms of the Lindemann parameterL = 〈u2〉1/2/d, with 〈u2〉 the mean square displacement
at melting andd the first-neighbour distance. The factorf 2(k) ensures rapid convergence
of the sum in equation (9).

In summary, while the structure of the dispersion relation in equation (9) is determined
by the crystalline translational symmetry, the DFT calculation leads to the approximate
expression in equation (10) for the effective force constants of the crystal near melting. The
essential input is provided by the static local field factorG(k) for exchange and correlation
and by the Lindemann parameterL. It is shown in appendix 2 that the RHA results of
Kugler [6] are recovered by settingG(k) = 0 in equation (10). The possibility of a self-
consistent evaluation arises from the fact that the Lindemann parameter is related to the
inverse first moment of the vibrational spectrum by

L2 = h̄

2Nmd2

∑
qs

1

ωqs

(12)

N being the number of vibrational modes contained in the first Brillouin zone. Equation (12)
applies in the extreme quantal limit of present interest and is free from long-wavelength
divergence inD = 2.

As a last remark, by summing equation (9) over the three phonon branches inD = 3
we find ∑

s

ω2
qs = ω2

p +
∑
K

[(q + K)2F(|q + K|) − K2F(K)] (13)
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with ωp = (4πne2/m)1/2. The sum on the right-hand side of equation (13) represents a
deviation from the Kohn sum rule, which is due to anharmonicity. Indeed, in the harmonic
limit equation (9) holds withF(k) → φ(k)/m and hence∑

s

ω2
qs → ω2

p.

2.2. Elastic constants by the LW method

The shear elastic constants are obtained from equation (9) by taking the long-wavelength
limit on transverse modes propagating along suitable symmetry directions. We define

D(k) = 1

2
k

dF(k)

dk

E(k) = 1

2
k2 d2F(k)

dk2
.

For a cubic crystal we find

c44

nm
=

∑
K 6=0

(
1

3
D(K) + K2

xK2
y

K4
[E(K) − D(K)]

)
(14)

from the casêq = [100] andε̂qs = [001], and

c11 − c12

2nm
=

∑
K 6=0

(
1

3
D(K) + 1

2

K4
x − K2

xK2
y

K4
[E(K) − D(K)]

)
(15)

from the casêq = [110] and ε̂qs = [11̄0]. Similarly, the shear modulus of the triangular
lattice is given by

c33

nm
=

∑
K 6=0

(
1

2
D(K) + K2

xK2
y

K4
[E(K) − D(K)]

)
. (16)

On the other hand, the longitudinal modes of a Wigner crystal have optical character
and the long-wavelength limit, taken along a symmetry directionq̂ yields

ω2
qL → ω2

p + Aq̂q
2. (17)

Here,ωp is the plasma frequency in the limitq → 0, which is given byωp = (4πne2/m)1/2

in D = 3 andωp = (2πne2q/m)1/2 in D = 2. For the leading dispersion coefficientAq̂

we find

A[100] = 1

2

d2[k2F(k)]

dk2

∣∣∣∣
k=0

+
∑
K 6=0

(
F(K) + 5

3
D(K) + K4

x

K4
[E(K) − D(K)]

)
(18)

along the [100] direction in a cubic lattice and

A[10] = 1

2

d2[k2F(k)]

dk2

∣∣∣∣
k=0

+
∑
K 6=0

(
F(K) + 5

2
D(K) + K4

x

K4
[E(K) − D(K)]

)
(19)

along the [10] direction in the triangular lattice.
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2.3. Elastic constants by the HD method

No charge separation accompanies a static homogeneous deformation of a Wigner crystal, so
that the HD method can be used to obtain an expression for the longitudinal elastic constant
c11 in addition to expressions for the shear elastic constants. Following the treatment
summarized by Ramakrishnan [16], the results are

c11

nm
=

∑
K 6=0

(
D(K) + K4

x

K4
[E(K) − D(K)]

)
(20)

c44

nm
=

∑
K 6=0

(
D(K) + K2

xK2
y

K4
[E(K) − D(K)]

)
(21)

c12

nm
=

∑
K 6=0

K2
xK2

y

K4
[E(K) − D(K)] (22)

for a cubic crystal, whereas for the triangular lattice we find

c11

nm
=

∑
K 6=0

(
3

2
D(K) + K4

x

K4
[E(K) − D(K)]

)
(23)

c33

nm
=

∑
K 6=0

(
3

2
D(K) + K2

xK2
y

K4
[E(K) − D(K)]

)
. (24)

We notice that there are differences between these results and those given in
equations (14)–(16) above. These differences are determined by the values ofD(K) and
will therefore be small if the reciprocal-lattice vectors lie in approximate correspondence
with the extrema of the functionF(k). This is the case for the BCC Wigner crystal.

3. Results for cubic electron crystals

We report in this section our results for the electron crystal atrs = 100 both for the BCC
and for the FCC structure. Our starting value for the Lindemann parameter isL = 0.30, as
obtained from QMC work on the BCC structure [12, 3]. DFT calculations of the freezing
transition by Senatore and Pastore [17] have shown that the equilibrium density profile of
the crystal near melting is well represented by a superposition of Gaussian clouds centred on
the lattice sites, withL = 0.34 for the BCC structure andL = 0.39 for the FCC structure.

With regard to the local field factorG(k), we have already emphasized in our earlier
work [9] the sensitivity of the calculated phonon dispersion curves and elastic constants to
the incorporation of the known asymptotic behaviours of this function both at lowk and
large k. These behaviours are reported in appendix 3 and are shown by the two dotted
curves in figure 1. The broken curve in figure 1 shows our earlier attempt to interpolate
between the two asymptotic behaviours, in comparison with QMC data for the spin-polarized
electron fluid atrs = 100 which have kindly been made available to us by Dr S Moroni
(see also [11]). The full curve in figure 1 shows the interpolation of the QMC data that we
have adopted for the purposes of the present calculations. However, we shall also use our
earlier estimate (indicated in the following byGest (k)) in order to illustrate the sensitivity
of the results to the details of the local field factor.
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Figure 1. The local field factorG(k) versusk/kF for the spin-polarized electron fluid inD = 3
at rs = 100. Dots with error bars are from QMC work of S Moroni (to be published) and the
full curve is an interpolation fit accounting for the asymptotic behaviours shown by the dotted
curves. The broken curve shows an earlier estimate ofG(k) for phonon calculations [9]. The
vertical bars show the locations of the stars of reciprocal-lattice vectors for the BCC lattice
(bottom) and for the FCC lattice (top).

3.1. The BCC crystal

Figure 2 reports the calculated phonon dispersion curves along the main symmetry directions
in the BCC crystal atrs = 100. The differences between the two forms ofG(k) given in
figure 1 mainly affect the phonon frequencies near the boundaries of the Brillouin zone by
amounts of at most 10%. The results are quite sensitive to the details of the force constants
in the regionk ≈ kF .

Figure 2 also compares our results with the phonon dispersion curves evaluated by earlier
authors [18–20] in the harmonic approximation. This is recovered by takingL = 0 and
G(k) = 0 in equations (9) and (10). It is evident that there is quite an appreciable softening
from anharmonicity in most of the phonon branches and especially in the transverse ones.

From the phonon frequencies shown in figure 2 we re-evaluated the Lindemann
parameterL by means of equation (12), using the Houston method [21, 22] to perform the
spectral sum from knowledge of the dispersion curves along the main symmetry directions.
The calculation was then continued up to self-consistency between the input value ofL

and that obtained from the phonon frequencies. The value of the Lindemann parameter at
convergence isL = 0.34 for both choices of the local field factor shown in figure 1. Such a
small shift from the initial input value taken from the QMC data implies only minor shifts
of the phonon dispersion curves relative to those shown in figure 2. An increase in the value
of L generally tends to enhance the anharmonic softening of the vibrational modes, but an
instability of the BCC lattice would ensue only at much larger values of this parameter.

Table 1 reports the calculated elastic constants and plasmon dispersion coefficient for
the BCC Wigner crystal atrs = 100. The results show little sensitivity to the details of the
local field factor and there is excellent agreement between the outputs of the LW and the
HD method. As already remarked in section 2 the consistency between the two methods
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Figure 2. Phonon dispersion relations of the BCC electron lattice atrs = 100 from
GQMC(k) (full curves) and fromGest (k) (broken curves), compared with the results of harmonic
calculations (circles). The direction of the wavevectorq, with components in units ofπ

√
3/d,

is shown below the graph. The frequencies are plotted as functions ofξ and are in units of the
plasma frequency.

Table 1. Elastic constantscij (in units of nmω2
p/k2

F ) and the plasmon dispersion coefficient

A[100] (in units of ω2
p/k2

F ) for the BCC Wigner electron lattice atrs = 100.

c11 c44 c12 c11 − c12 A[100]

GQMC(k) LW 0.141 0.160 −1.70
HD 0.300 0.152 0.078 0.222

Gest (k) LW 0.158 0.159 −1.68
HD 0.318 0.159 0.156 0.162

hinges on the fact that the extrema in the field of force constantsF(k) are in good register
with the reciprocal-lattice vectors of the BCC lattice, so that the magnitude of the quantities
D(K) is effectively negligible in this case.

3.2. The FCC crystal

Figure 3 reports the phonon dispersion curves for an electron crystal in the FCC structure,
calculated atrs = 100 with L = 0.30. The softening of the phonon branches from
anharmonicity and their sensitivity to the details of the local field factor are illustrated
as in figure 2. It is seen from figure 3 that the instability of a transverse phonon branch near
the zone centre in the [110] direction that we reported in our earlier work [9] is confirmed by
the present calculations. As recalled at the beginning of this section, the DFT calculations
of Senatore and Pastore [17] yieldL = 0.39 in this case and thus do not support the
appreciable lowering of the Lindemann parameter that would be necessary to stabilize this
structure.

The corresponding results for the mechanical and long-wavelength properties of the
FCC lattice are shown in table 2. The lattice is unstable against a (c11 − c12) shear both in
the LW and in the HD calculation. The two methods yield substantially consistent results
when the local field factorG(k) is taken from the QMC data. In this case the HD calculation
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Figure 3. Phonon dispersion relations of the FCC electron lattice atrs = 100 fromGQMC(k)

(full curves) and fromGest (k) (broken curves). The direction of the wavevectorq, with
components in units ofπ

√
2/d, is shown below the graph. The frequencies are plotted as

functions ofξ and are in units of the plasma frequency.

Table 2. Elastic constantscij (in units of nmω2
p/k2

F ) and the plasmon dispersion coefficient

A[100] (in units of ω2
p/k2

F ) for the FCC Wigner electron lattice atrs = 100.

c11 c44 c12 c11 − c12 A[100]

GQMC(k) LW 0.171 −0.158 −2.32
HD 0.012 0.176 0.159 −0.147

Gest (k) LW 0.184 −0.245 −1.98
HD 0.169 0.198 0.184 −0.016

shows that the mechanical instability of the FCC lattice arises from a very low value of
the elastic constantc11. Table 2 also shows that the value of this elastic constant is very
sensitive to the choice of the local field factor. This sensitivity is associated with the (200)
star of reciprocal-lattice vectors of the FCC structure, giving from the geometrical factors
in equations (20)–(22) a large contribution toc11 but no contribution to the shear elastic
constants.

4. Results for the triangular electron crystal

The QMC work on the triangular Wigner lattice [4, 5] indicates that the valueL ≈ 0.3 is
again appropriate near melting in the fully quantal regime. Figure 4 reports the basic input
concerning the local field factorG(k) for the electron fluid inD = 2 with e2/r interactions.
Circles and triangles are from QMC work on the spin-polarized and unpolarized fluid at
rs = 40, respectively, as kindly made available to us by Dr S Moroni (see also [10]).
Figure 4 also shows the asymptotic behaviours ofG(k) from the expressions reported in
appendix 3 and the interpolation fits that we have adopted in the calculations reported below.

Figure 5 shows our results for the phonon dispersion curves in the triangular lattice
at rs = 40 as calculated from the two forms ofG(k) reported in figure 4. They are
compared with the results of calculations by Bonsall and Maradudin [23] in the harmonic
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Figure 4. The local field factorG(k) versusk/kF for the electron fluid inD = 2 at rs = 40.
Dots are from QMC work of S Moroni (to be published) for the spin-polarized fluid and the
full curve is an interpolation fit accounting for the asymptotic behaviours shown by the dotted
curves. The triangles with error bars and the broken curve give the corresponding data for the
unpolarized fluid, with the appropriate asymptotic behaviours. The vertical bars at the top show
the locations of the stars of reciprocal-lattice vectors for the triangular lattice.

approximation. The longitudinal branches start at the zone centre with the characteristic 2D
behaviourω(q → 0) = (2πne2q/m)1/2 and show only small shifts from anharmonicity at
finite wavenumber. There is instead an appreciable anharmonic softening in the transverse
branches. In recent calculations by Esfarjani and Chui [24] it was found that both
longitudinal and transverse branches are softened by anharmonicity when cubic corrections
are perturbatively added onto an RHA calculation, the effects on the transverse branches
being quantitatively similar to those shown in figure 5 from the spin-polarized fluid data.

For the triangular lattice we have not succeeded in bringing to convergence a self-
consistent calculation of the phonon frequencies and the Lindemann parameter. A somewhat
lower initial value ofL would in this respect be more appropriate than the valueL = 0.30
within the present theoretical approach, but still does not allow convergence to be reached
at rs = 40. At such values ofL the triangular lattice is nevertheless stable against elastic
deformations, as can be seen from the results on the elastic constants in table 3. At the
quantitative level the calculated elastic constants are seen from table 3 to be very sensitive
to the input data on the local field factor (spin-polarized versus unpolarized fluid) and to
the method used in their evaluation (LW versus HD). All these results can be explained
a posteriori from the relative locations of the extrema inF(k) and the reciprocal vectors
of the triangular lattice.

4.1. The relation to plasmon excitation in the 2D fluid

We have already noticed that the longitudinal phonon branches in the triangular Wigner
lattice start at the zone centre with the dispersion form of the plasmon inD = 2. A
full comparison of the excitations in the anharmonic solid near melting with the plasmon
excitation in the fluid near freezing is given in figure 6. All the dispersion curves shown
there are terminated at the upper edge of the single electron–hole pair continuum in the fluid.
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Figure 5. Phonon dispersion relations of the triangular electron lattice atrs = 40 from
Gpol(k) (full curves) and fromGunpol(k) (broken curves), compared with the results of harmonic
calculations (dots). The direction of the wavevectorq, with components in units of 4π/(

√
3d),

is shown below the graph. The frequencies are plotted as functions ofξ and are in units of
ω0 = [8e2/(md3)]1/2.

Table 3. Elastic constantscij (in units of 2e2/(πd3)) and the plasmon dispersion coefficient
A[10] (in units of 2e2/(πnmd3)) for the triangular Wigner electron lattice atrs = 40.

c11 c33 A[10]

Gunpol(k) LW 0.250 −1.56
HD 0.749 0.444

Gpol (k) LW 0.123 −1.92
HD 0.369 0.363

To understand the information carried by figure 6 we first recall that, as discussed in
detail elsewhere for the case of4He [25], the crystalline dispersion relations in equations (9)
and (10) can be obtained by back-folding of the dispersion relation

ω2(k) = k2F(k) = 2πne2k

m
f 2(k)[1 − G(k)] (25)

into the first Brillouin zone. The mode frequency from equation (25) is shown in figure 6
together with the Feynman-like form of the dispersion relation for a fluid within a single-
mode representation of the spectrum of density fluctuations

ω2(k) = − nk2

mχ(k)
. (26)

The main difference between these two expressions at the values ofrs of present interest
arises from the Debye–Waller factor in equation (25), which depresses the collective mode
frequency below the result in equation (26) at finite values of the wavenumber.

In a Bose system like4He this depression reflects multi-phonon modes overlying
the single-mode dispersion curve and picking up oscillator strength as the wavenumber
increases. However, in a Fermi system there is an opposite effect from the growth of
oscillator strength in the single pair continuum underlying the collective mode. This is
illustrated in figure 6 by reporting the dispersion relation calculated by Neilsonet al [26]
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Figure 6. Dispersion relations for the collective mode in the 2D electron fluid near freezing.
From bottom to top are shown the results of equation (25) usingGpol(k) (full curve) and
Gunpol(k) (long-dashed curve), the results of equation (26) usingχpol(k) (chain curve) and
χunpol(k) (short-dashed curve) and the result of a direct calculation on the unpolarized fluid
(dotted curve).

for the unpolarized electron fluid atrs = 35 in D = 2. It is seen that, according to their
result, the repulsion on the plasmon from the single pair continuum is dominant and leads
to overshooting of the single-mode result in equation (26).

5. Concluding remarks

We have evaluated the phonon frequencies and the mechanical properties of ideal electron
crystals near melting in the quantal regime using an approximate approach from density
functional theory to account for exchange and correlation. For the BCC crystal we have
been able to demonstrate convergence of a self-consistent phonon calculation and stability
against elastic strains, under a rather wide range of choices for the inputs of the calculation.
On the same grounds we can conclude that the FCC structure for the electron crystal, though
energetically competitive with the b.c.c. structure atrs ≈ 100, is mechanically unstable under
shear.

Our results allow less definite conclusions for the ideal 2D electron solid near melting.
We found it to be mechanically stable at the expected value of the mean square particle
displacement, though quantitatively the calculated values of the elastic constants are very
sensitive to the details of the theory and to its inputs. Furthermore, a demonstration that a
self-consistent phonon calculation beyond the simplest RHA can be brought to successful
conclusion is still lacking. Anharmonicity in this system clearly deserves further and more
refined theoretical study.
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Appendix 1. The ideal contribution to the deformation work

An accurate treatment of the ideal kinetic energy functional is usually necessary in DFT
calculations and is achieved by transforming the equilibrium condition given by equation (2)
into a single-particle Schrödinger equation involving the Kohn–Sham effective potential
defined there. However, in the very special case presented by a DFT calculation of phonon
dispersion curves for a Wigner crystal at large values ofrs , the ideal contribution1�0 to
the deformation work can be shown to be essentially negligible.

We first estimate the consequences of the ideal term by treating the kinetic energy
functional by the same type of truncated second-order expansion which has been used in
treating the excess term in section 2 in the main text. It is easily seen that the effective
force constants entering equation (9) are then shifted by an amount1F(k) given by

1F(k) = − nf 2(k)

mχ0(k)
(A1.1)

whereχ0(k) is the Lindhard susceptibility for the ideal Fermi gas. Numerical evaluation
shows that the vibrational frequencies are shifted by amounts of order 1–2% at values ofrs

corresponding to melting both inD = 3 and inD = 2.
For a more transparent analytical estimate leading to essentially the same conclusion

we resort next to a local density approximation for the kinetic energy functional:

T0[n(r)] =
∫

drn(r)ε0(n(r)) (A1.2)

with ε0(n) the kinetic energy per particle in an ideal Fermi gas at densityn. By including
a term from the third functional derivative ofT0 one easily finds

1�0 = −1

2
α

∫
dr1

∫
dr2[nd(r1)nd(r2) − n0(r1)n0(r2)] (A1.3)

where

α = 2
dε0

dn
+ 4n

d2ε0

dn2
+ n2 d3ε0

dn3
(A1.4)

in D = 3 and

α = 2
dε0

dn
(A1.5)

in D = 2. These results correspond to shifts inG(k) in equation (10) which are given by
−β(k/kF )2 with β = 2.53/rs for a spin-polarized system inD = 3 and by−β(k/kF ) with
β = 2/rs for a spin-polarized system inD = 2. It is evident that at the critical value ofrs

such shifts can only affect the calculated phonon frequencies at the level of a few per cent.
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Appendix 2. Derivation of the RHA limit in D = 3

The dynamical matrixDαβ(q) corresponding to equations (9) and (10) inD = 3 is

Dαβ(q) = 1

3
ω2

pδαβ + 1

Nm

∑
R 6=0

[1 − exp(iq · R)]
∂2ψ(R)

∂Rα∂Rβ

(A2.1)

where a Greek suffix denotes a Cartesian component,R are the lattice sites andψ(r) is the
Fourier transform of the functionmF(k) defined in equation (10).

The expression (A2.1) has the same structure as the general result derived by Kugler [6]
within the renormalized phonon theory. In his case the functionψ(R) is given by

ψK(R) = exp

( ∑
αβ

λαβ(R)∇α∇β

e2

R

)
(A2.2)

where

λαβ(R) = 〈uα(0)µβ(0)〉 − 〈uα(0)uβ(R)〉 (A2.3)

u(R) being the fluctuation in the position of the particle associated with the lattice siteR.
In his RHA calculations to leading order Kugler neglected the inter-site term in

equation (A2.3). Using〈uα(0)uβ(0)〉 = 1
3〈u2〉δαβ for a cubic crystal,ψK(R) reduces in

this case to

ψK(R) → exp

[
1

3
〈u2〉∇2

(
e2

R

)]
. (A2.4)

After Fourier transform equation (A2.4) yields a field of effective force constants given by

FK(k) → 1

m
f 2(k)φ(k) (A2.5)

which corresponds to equation (10) when the local field factorG(k) is set equal to zero.
Conversely, the above derivation shows that the local field factor in equation (10) effectively
accounts in our DFT approach for inter-site correlations from data on the fluid phase near
the freezing point.

Appendix 3. Asymptotic behaviours of the local field factorG(k)

The low-k behaviour ofG(k) is fixed by the compressibility sum rule [13], yielding

lim
k→0

G(k) = γ k2 (A3.1)

with

γ = (4πn2e2)−1

(
1

K0
− 1

K

)
= −(4πe2)−1

(
n

d2εxc

dn2
+ 2

dεxc

dn

)
(A3.2)

in D = 3 and

lim
k→0

G(k) = γ k (A3.3)

with

γ = (2πn2e2)−1

(
1

K0
− 1

K

)
= −(2πe2)−1

(
n

d2εxc

dn2
+ 2

dεxc

dn

)
(A3.4)

in D = 2. In these equationsK0 is the compressibility of an ideal Fermi gas whileK
and εxc are the compressibility and the exchange and correlation energy per particle of
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the interacting electron fluid. The exchange and correlation energy of the electron fluid is
accurately known from QMC work [3–5].

The asymptotic behaviour ofG(k) in the limit of largek is instead fixed by the Kimball–
Niklasson relation. InD = 3 one has [27]

lim
k→∞

G(k) = ak2 + b (A3.5)

with

a = 〈T − T0〉
6πne2

(A3.6)

b = 2

3
[1 − g(0)] + 4m

πne2h̄2

(
1

5
〈T 2 − T 2

0 〉 − 1

9
(〈T 〉2 − 〈T0〉2)

)
. (A3.7)

Here, 〈T n〉 are the moments of the kinetic energy of the interacting electron fluid and
〈T n

0 〉 are their counterparts in the ideal Fermi gas, whileg(0) is the contact value of the
electron–electron pair distribution function. The corresponding relations inD = 2 are [28]

lim
k→∞

G(k) = ak + b (A3.8)

with

a = 〈T − T0〉
3πne2

(A3.9)

b = 1 − g(0). (A3.10)

The first moment〈T 〉 is again known from the QMC data on the ground state energy [3–5],
while the quantityg(0) is zero in the spin-polarized fluid and is effectively zero in the
unpolarized fluid near freezing. For the second moment〈T 2〉 entering equation (A3.7) we
have instead used a lower bound given by Holas [27] to estimateb ≈ 0.8 in D = 3.
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